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The use of biometric sensors for monitoring an individual’s health and related behaviors, continu-
ously and in real time, promises to revolutionize health care in the near future. In an effort to better
understand the complex interplay between one’s medical condition and social, environmental and
metabolic parameters, this paper presents the KNOWME platform, which is a complete, end-to-
end, body area sensing system that integrates off-the-shelf biometric sensors with a Nokia N95
mobile phone to continuously monitor the metabolic signals of a subject. With a current focus on
pediatric obesity, KNOWME employs metabolic signals to monitor and evaluate physical activity.
KNOWME development and in-lab deployment studies have revealed three major challenges: (1)
the need for robustness to highly varying operating environments due to subject-induced variabil-

ity such as mobility or sensor placement, (2) balancing the tension between achieving high fidelity
data collection and minimizing network energy consumption, and (3) accurate physical activity
detection using a modest number of sensors. The KNOWME platform described herein directly
addresses these three challenges. Design robustness is achieved by creating a three-tiered sensor
data collection architecture. The system architecture is designed to provide robust continuous
multichannel data collection, and scales without compromising normal mobile device operation.
Novel physical activity detection methods which exploit new representations of sensor signals pro-
vide accurate and efficient physical activity detection. The physical activity detection method
employs personalized training phases and accounts for inter-session variability. Finally, exploit-
ing the features of the hardware implementation, a low-complexity sensor sampling algorithm is
developed, resulting in significant energy savings without loss of performance.

Categories and Subject Descriptors: C.3 [Special-Purpose and Application-Based Systems]:
Real-time and embedded systems

General Terms: Algorithms, Design, Human Factors, Measurement, Performance

Additional Key Words and Phrases: Mobile Phones, People-centric Sensing

1. INTRODUCTION

Accurate detection of a person’s state is critical in many healthcare domains, as
it can be used to measure a person’s physical activity (PA) level. PA has many
health benefits, including reduced obesity, reduced risk for cardiovascular disease,
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osteoporosis and type 2 diabetes, reduction of breast cancer risk by as much as 40%,
reduction of risk for many other cancers including colon and endometrial cancer,
and improved mental health and well-being [Spruijt-Metz et al. 2008]. Obesity, the
health risk focused on in this paper, is a growing health care concern for youth and
adults [Ogden et al. 2008; Caballero 2007] and outranks both smoking and drinking
in its deleterious effects on health and health costs [Sturm 2002]. Promoting PA to
reduce obesity is a key component to reverse this epidemic [PAGAC 2008]. Thus,
the ability to record and interpret PA continuously with minimal intervention from
the subject is the first step in understanding the complex interplay of environmen-
tal, genetic and socio-economic reasons for weight gain [Levine et al. 2000; Sirard
and Pate 2001]. In spite of its significant potential, detecting and recording PA
continuously remains notoriously difficult [Spruijt-Metz et al. 2008].

One type of sensor system which has been extensively used for assessing PA in pre-
ventive health applications is accelerometry. Unfortunately, such systems currently
have many drawbacks in implementation [Spruijt-Metz et al. 2008]: participants
must wear accelerometers for several days and then return them to researchers for
data download, processing and interpretation. Also, current accelerometer systems
for PA assessment are custom-made with proprietary software and only provide
processed measurements, not raw accelerometer data; as a result, data cannot be
compared across systems [Chen and Bassett 2005] and have limited utility for fur-
ther signal processing. Additionally, calibration of accelerometers for PA typically
employs high-overhead methodologies, such as whole-room calorimeters [Chen and
Sun 1997], energy consumption measurements using oxygen consumption [Crouter
et al. 2006] or doubly-labeled water [Sun et al. 2008; Pfeiffer et al. 2006].

Further problems in current approaches to PA, and ones which are independent
of the type of system implemented, include the lack of a single accepted method-
ology for identifying PA, though pattern recognition is being used as one approach
for acquiring easily interpretable and robust measures [Bonomi et al. 2009]. Fur-
thermore, age, gender, and the amount of body fat versus lean tissue present are
all subject-specific complicating factors in PA detection. The KNOWME platform
remedies the drawbacks discussed above by developing real-time measurement of
PA and providing immediate feedback, which can be used in adaptive interventions
that are tailored to the individual needs of the subject [Collins et al. 2004].

Given this context, we believe that a combination of health sensors and mobile
phones will play a significant role in overcoming the difficulties of practical, ac-
curate PA state detection, which in turn will lead to improved assessment of PA
levels. It is with this in mind that the KNOWME system is under development
as an end-to-end mobile health platform [Annavaram et al. 2008] that interfaces
wireless sensors with a Nokia N95 mobile phone via Bluetooth to precisely moni-
tor heart rate using ECG sensors, blood oxygen levels using a pulse oximeter, and
motion using the mobile phone’s built-in accelerometer. Our current implementa-
tion collects also information from other phone-internal sensors including Global
Positioning Systems (GPS) measurements and audio and video tags, which we plan
to incorporate into our state detection algorithms in the future. We exploit the
mobile phone’s communication capabilities to transmit the combined health record
information to a data server in real time, and its computing capabilities to process
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the sensor data in order to detect and classify current physical activity.
Based on the development of our prototype system and in-lab deployment studies,

this paper addresses three major research challenges:

(1) Robust System Design. The mobile phone interfaces with the sensors to col-
lect and store sensor data in addition to acting as the primary computation
node for processing the stored sensor data. Using a mobile phone for computa-
tion results in several unique challenges: mobile phones are highly sensitive to
small increases in the memory footprint, which causes application instability.
Mobile devices also rely on software implementation of complex floating point
operations and hence using these operations, particularly during a signal pro-
cessing stage, can lead to dramatic slowdowns in the application. In addition
to computational issues, subject mobility and incorrect sensor placement can
lead to poor signal quality. Hence, the first critical challenge that this paper
addresses is design robustness.Thus, the system architecture is three-tiered, and
designed to provide robust, continuous, multi-channel data collection, and to
scale without compromising normal mobile device operation.

(2) Accurate PA Detection and Classification. Once data from multiple sensors is
collected, highly accurate PA state detection is the next challenge to address.
This goal is achieved via novel sensor signal representations and high perfor-
mance classification algorithms. Our methods employ personalized training
phases and account for inter-session variability, including inconsistent sensor
placement by the subject. In particular, this paper describes new algorithms
developed using multi-modal sensing, wherein data from multiple sensors are
combined to achieve 85.5% accuracy in user-state detection.

(3) Energy Efficiency. The most precious resource on a mobile phone is the battery,
which can be drained dramatically by simultaneous and continuous communi-
cation with multiple biometric sensors and sensor data analysis. Therefore,
balancing the conflicting demands of high fidelity data collection and the need
to conserve battery life is the final challenge addressed in this paper in the form
of an algorithm for optimal sampling that minimizes the probability of misclas-
sification between multiple PA states. KNOWME then uses a low-complexity
approximation of the sampling procedure which can be easily implemented on
the mobile phone, and which yields near-optimal performance.

The remainder of this paper is organized as follows. The three primary compo-
nents of KNOWME and their relation to the current state of the art are outlined
in Section 2. The first component, namely KNOWME’s current hardware and
software implementation, is presented in Section 3. The multimodal state detec-
tion algorithm is presented in Section 4. Section 5 details the final component,
an optimal sensor-sampling algorithm and its low-complexity approximation which
develops KNOWME as an energy-aware system. The data collection protocol and
system performance using real data, are presented in Section 6. Section 7 outlines
lessons learned and research in progress for the KNOWME system as a whole.

2. PREVIOUS WORK RELEVANT TO THE KNOWME COMPONENTS

The KNOWME Network is a complete end-to-end platform for health care monitor-
ing, which in its current implementation focuses on a holistic approach for physical
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activity monitoring with three tightly coupled components: (1) hardware and soft-
ware implementations, (2) physical activity detection and (3) optimal sampling for
energy-efficiency. Each of these components directly addresses important challenges
which must be overcome in order to deploy our system for longer-term continuous
health-monitoring. In this section, we overview the state of the art in each of these
areas, and highlight the contributions of the KNOWME Network.
Mobile Phones and Health Care: The use of mobile phones in health care

is emerging as a major research area [Patrick et al. 2008]. Recent studies have
demonstrated the efficacy of mobile phones for monitoring alcohol abuse [Collins
et al. 2003] and controlling tobacco [Rodgers et al. 2005] and drug addiction [Freed-
man et al. 2006]. These first-generation studies have employed mobile phones for
the provision of advice or support via SMS or voice messages; mobile phones are
also used for user-provided statistics via simple mobile device applications. In con-
trast, the KNOWME platform integrates external sensors with the phone’s internal
sensors to provide a comprehensive, continuous, real-time view of the user’s state.
Multi-Sensor Physical Activity and User State Detection: Promising

recent results have revealed the efficacy of wearable body accelerometers (single
or multiple) for PA detection employing naive Bayes classifiers and C4.5 decision
trees [Maurer et al. 2006; Bao and Intille 2004; Ravi et al. 2005], support vector
machines (SVMs) [Ravi et al. 2005; Huynh et al. 2007], and hidden Markov models
(HMMs) [Krause et al. 2005]. The detection performances of these classification
techniques for activity-detection are found to be comparable [Jatoba et al. 2008];
we employ SVM classifers as described in Section 4. Five accelerometers offered a
35% PA recognition rate over one in [Bao and Intille 2004]. However, while the
use of multiple accelerometers may be acceptable in some usage scenarios, they are
cumbersome when used for continuous monitoring. Therefore, KNOWME uses a
smaller, heterogeneous set of sensors which provide complementary information for
85.5% accuracy of detection.
Prior approaches based on multiple integrated sensor modalities have also been

proposed [Lester et al. 2006; Parkka et al. 2006; Ermes et al. 2008; Miluzzo et al.
2008], but these have normally focused on system design, and have not explored the
novel signal processing techniques for PA detection or energy efficiency employed
herein. In addition to a tri-axial accelerometer, we use biometric signals from an
ECG sensor1 for PA recognition. Using different types of sensors will enable us
to detect more sophisticated types of activities and motions; for example, there
typically exists information that is extracted from the ECG signals that is not
available in the accelerometer signals. Another previous method [Maguire and
Frisby 2009] has also employed accelerometry and ECG signal for activity detection
via kNN classifers, but employs a strict subset of the features considered herein. A
principal component analysis (PCA) for ECG signals to study body movement was
considered in [Pawar et al. 2007], but inter-session variability was ignored. This
is an important complicating factor, as continuous deployment of WBAN systems
invariably involves daily disparities in sensor placement and physical activity levels
associated with a specific type of activity, e.g. walking at different rates. Ignoring

1Though KNOWME does track blood oxygen levels via a pulse oximeter (OXI), this sensor was
found to have limited utility for PA classification and so is currently not involved in PA detection.
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this inter-session variability thus adversely affects the detection accuracy. Herein,
we employ Hermite polynomial modeling [Linh et al. 2003] for the purposes of PA
recognition; this type of modeling has previously been employed in arrhythmia
detection, and its use here allows for variations in the shape of the ECG waveform
due to different activities and address inter-session variability, resulting in higher
detection accuracy.

Energy Efficient Sensing: Another important challenge in WBANs is improv-
ing system energy-efficiency, since long-term deployment is limited by battery life.
This problem is further exacerbated for WBANS employing Bluetooth or GPS. In
contrast to most traditional sensor networks, KNOWME achieves energy efficiency
by minimizing the use of Bluetooth communication between the mobile phone and
the sensors: having the mobile phone listen less to sensors (while maintaining per-
formance) directly translates to prolonged battery life. Energy saving strategies for
mobile and/or sensor networks in general are a well-studied problem [Shih et al.
2002; Kang et al. 2008], with recent extensions to WBANs. A joint sampling and
duty cycle schedule is examined in [Benbasat and Paradiso 2007]; similarly a task-
scheduling scheme is considered in [Liu et al. 2007]. An energy optimization scheme
which manipulates the connection latency of Bluetooth and Zigbee for WBANs is
studied in [Yan et al. 2007]. While energy efficient context monitoring is considered
in [Kang et al. 2008; Shin et al. 2009], these works focus on the provision of ap-
plication programming interfaces for sensor management while identifying changes
in PA state. In contrast, the KNOWME platform conducts people-centric, user-
state recognition, rather than PA state change detection. Furthermore, KNOWME
achieves energy-efficiency via optimized detection performance (probability of mis-
classification) for PA recognition.

Integrating User State in Mobile Applications: User state recognition has
utility beyond WBANs for health monitoring, and is being employed in a new class
of mobile cooperative services: real time traffic monitoring [Hoh et al. 2008] and
social networking (such as Facebook and MySpace). User state can be defined by
biometric signals, motion, location and background. Access to such information
can facilitate application adaptation, as in the case of more context-aware appli-
cations which endeavor to exploit user state as defined by sensors embedded on
mobile phones. For example, CenceMe [Miluzzo et al. 2008] uses the mobile phone
on-board accelerometer to sense four PA states (walking, running, sitting, stand-
ing), which are then securely shared with “buddies” within a defined social network.
KNOWME, on the other hand, provides higher-precision PA state classification for
more states by employing multi-modal signal processing and heterogeneous sensors
(accelerometers and ECG). While mobile devices are used to monitor mobility pat-
terns in [Ryder et al. 2009] and change mobile device settings (ring tone, alert type)
in [Siewiorek et al. 2003] via a context-aware mobile application, decision making in
both these works is external to the mobile phone; Sensay [Siewiorek et al. 2003] does
its sensing external to the mobile phone as well. In contrast, KNOWME mobile
device fusion center is responsible for both data collection and decision making.

Thus, a review of the prior art suggests that that a holistic mobile energy-efficient
health-monitoring system that provides accurate state detection and real-time user
feedback with moderate complexity, and real-time implementation does not exist.
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Fig. 1. Three-tier KNOWME architecture.

However, the successful development of the hardware and software platforms, as
well as algorithms for physical activity detection and energy-efficient sampling,
suggest that the prototype KNOWME platform is a step in this direction.

3. SYSTEM ARCHITECTURE

The KNOWME Network is built using a three-tier architecture as shown in Figure
1. The first tier is the WBAN layer that connects multiple sensors with a mobile
phone. The second tier is a web server that receives data from the WBAN and
performs data consistency checks and encryption. The web server then transmits
the data to the back-end database server that stores the data. In our current
implementation, the web server and database server are primarily used for data
storage over long time horizons (multiple weeks) and do not participate directly in
PA detection. In the future, these layers will enable remote visualization and long
term historical data analysis.

3.1 Sensor Tier and Mobile Application

The WBAN layer is comprised of the on-body sensors and the mobile device,
and thus experiences operating conditions and usage models which vary from user
to user and over time. A WBAN node in KNOWME consists of a Nokia N95,
and Bluetooth-enabled oximeter (OXI) and electrocardiograph (ECG) sensors from
Alive Technologies [AliveTechnologies 2008]. The ECG and OXI sensors can sam-
ple at 300 Hz or 75Hz; sensor data is transmitted via Bluetooth to the N95 or
locally stored on flash memory. The core of the WBAN is a mobile application
which allows the N95 to pair with the external sensors via Bluetooth for sensor
data collection. Additionally, sensor data is collected from in-built N95 sensors: an
accelerometer (ACC) and GPS. End-user annotation, which is sensor specific, via
audio and video tags is also enabled by the mobile application using user-specified
semantics. KNOWME does not currently actively use GPS or audio/video tags;
however ongoing research is examining the correlations between geo-spatial tags
and metabolic data. The mobile application must gather data from multiple sen-
sors with minimal user intervention and no interruption to regular mobile device
functionality. Continuous, long-term data collection (e.g. 12 hours/day for multiple
weeks) is envisioned and thus robustness is also necessary for the mobile application.
The mobile application is divided into two components: a server component and

a client interface application for configuring the sensors and data visualization.
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Fig. 2. Server-client interactions in the
mobile application.

Fig. 3. Mobile (Nokia N95) visualization
client screenshot.

After considering the tradeoffs between productivity and efficiency, we chose the
S60 Python for the server side and the J2ME for the client interface. Since these
languages are not restricted by platform, our application is not tied to the Nokia
N95. The server component of the mobile application comprises of four tasks: server
configuration manager, data collector, device manager and service manager. Figure
2 shows the various components in the server application interacting with the client.
During the initialization phase of KNOWME, the configuration manager reads the
sensor configuration database to identify all the potential external sensors that can
form the WBAN. The configuration database consists of information such as sensor
names and Bluetooth MAC addresses necessary for pairing with the mobile phone.
Note that not all the sensors in the database are active.

The configuration manager then creates a collector thread. The collector thread
exploits the configuration database to initiate a Bluetooth scan to determine the
list of active external sensors at that time. For each sensor, the collector thread
allocates a memory buffer for sensor data and creates a device manager thread.
The device manager thread is responsible for pairing with the corresponding sensor
and to receive sensor data continuously. The device manager thread also deals with
the sensor vagaries, such as lost connections, noisy data etc. When a connection is
lost, as identified by no data reception for an extended period of time, the device
manager thread initiates a new pairing request for the sensor. Finally, the server
component also creates a single service thread to interface between the sensor data
and any external application that may request the sensor data. For instance, the
J2ME client visualization application requests the service thread to provide sensor
data which it then plots.

The client component is designed to provide a user interface. Furthermore, new
sensors are configured through the client component: the client application scans
for a new Bluetooth device and finds the associated MAC address. These values
are then communicated to the service thread within the server manager which will
then store these values in the device database. The values are retrieved during
the server initialization and configuration, as described earlier. Figure 3 shows the
screen shot of the client visualization software.
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Sensors # of packets per hour Packet loss (%)

ECG & ECG 14999/14998 0/0

Oximeter & ECG 36008/14931 0/0.0045

Oximeter & ECG & ECG 36007/7351/7312 0/50.9/51.2

Table I. Data loss on Bluetooth channel

3.2 Sensor Energy Management and Data Integrity

Herein we quantify the severity of the energy consumption problem using the
KNOWME platform which motivates our energy efficient sensor sampling algo-
rithm derived in Section 5. In KNOWME, the sensors simply transmit data to the
mobile phone fusion center; the Nokia N95 performs all the coordination, processing
and computation tasks, as described in the previous section.
Figure 4 shows the battery level of the mobile phone as we turn on various sensors

used in KNOWME. The curve labeled ALL UnBuffer shows the battery drain over
time on the mobile phone as we collect data from all the sensors (ECG, OXI, ACC,
GPS) and write them to the local mobile phone flash drive without any buffering.
The battery last just about 4 hours. For comparison, N95 has 10 hours of rated
talk time and over 200 hours of standby time. The ALL Buffer curve considers the
case where we buffer the writes to the flash drive and send large packets to write to
the flash. Thus, we find that buffering improves the battery life from 240 minutes
to 299 minutes, a 25% improvement.
The two remaining curves contrast the effect of using the internal versus the

external sensors on the Nokia N95. The curve labeled Only BT shows battery life
when using only the Bluetooth enabled sensors (ECG, OXI) giving a measure of
the energy cost of Bluetooth alone: 475 minutes. If WBANs are to become ubiq-
uitous, we expect that judicious sampling of external sensors to conserve mobile
phone battery (and the external sensor battery as well) will be critical. Finally,
the graph labeled Only INT shows the battery drain when using the N95 internal
sensors only (ACC, GPS), which results in a battery life of 600 minutes; a signifi-
cant improvement over using the Bluetooth sensors. However, most of the energy
consumption in the internal sensors is due to GPS: a single GPS reading typically
consumes 6.616 J whereas an ACC reading costs 0.359 J.
A source of data loss is the inability of the mobile phone to keep up with the
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data reception rate from the external sensors. Due to limitations in buffering while
receiving data from multiple Bluetooth channels data packets are lost. Table I
shows the data packets lost per hour due to this limitation.
Each instance of “ECG” in Table I denotes a distinct Alive Technologies ECG

sensor communicating with the mobile device via Bluetooth at the 300 Hz sampling
rate. Although, Bluetooth allows a maximum of six connections, a relatively high
data loss is seen with the addition of a third sensor. The packet loss is negligible for
the OXI sensor in the three-sensor scenario due to the significantly shorter packets
employed relative to the ECG sensor. When the external sensors are paired with a
traditional computing platform such as a desktop no data losses are observed. We
conclude that the data loss is primarily due to the limited buffer size for Bluetooth
communication in the mobile phone. As such, sensor data transmission rate plays a
role in data integrity. The buffer limitation is also a reflection of the fact that current
generation mobile phones are not designed for use in high data rate WBAN designs.
There is also a fundamental tradeoff between the number of allowed concurrent
connections and power consumption of the radio. Thus, both battery life and data
integrity issues motivate developing energy-aware sensing and sampling protocols,
which are addressed in Section 5.

3.3 Lessons from System Design

Based on our extensive system design effort over the past two years we make the fol-
lowing observations regarding the use of mobile phone in KNOWME. An inherent
challenge is developing a mobile application to reside on a mobile device not orig-
inally designed for use in a WBAN. Limited memory and its scheduling presents
a major challenge. Available memory is small (128 MB on the Nokia N95) and
typically fixed. A recent enhancement is the provision of virtual memory (VM);
without VM, the programmer must manage application memory usage. However,
this task is difficult as the scheduling of tasks is not known a priori. Thus, the
mobile phone may schedule a higher priority task, such as an incoming call, com-
peting for memory with KNOWME and resulting in a non-repeatable memory
allocation bug for KNOWME. This problem is exacerbated when the user launches
multiple applications, resulting in KNOWME application instability. We separated
the client visualization application from the primary sensing task using a separate
server component. Most of the memory allocation in the server component is to
buffer the sensor data and perform a bulk write to the phone’s flash memory. As
shown in Figure 4 buffering improves energy efficiency by 25%.
Typical signal processing methods employ complex floating point computations

which are not currently supported by the N95 hardware. Such operations are
executed as a software routine, consuming both significant power as well as time.
Thus, naive implementation of signal processing algorithms on the mobile phone
can cause dramatic application slowdowns. We used either approximations or pre-
computed values to reduce the impact.
The choice of available programming paradigms on mobile phones are also lim-

ited. For instance, the N95 supports Python, J2ME or Native Symbian program-
ming to develop applications. Each of these options provide a tradeoff between
programmer productivity and execution overhead. It is relatively simple to develop
J2ME based mobile applications, but the Java runtime layer adds significant compu-
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tational (and thus energy) overhead. We wrote the server component using Python
S60 and the client visualization application using J2ME. We are currently exploring
developing the server component as a native Symbian application to further reduce
the Python overhead. The debugging capability is also severely constrained on
the Nokia N95, as it does not support on-device application debugging. Thus, one
must employ an emulator which may not faithfully capture mobile phone behavior.
Hence, most of the system design effort was focused on the WBAN design with the
primary goal of providing robustness under unpredictable operating conditions.

4. MULTIMODAL PHYSICAL ACTIVITY RECOGNITION

The KNOWME Network recognizes physical activities by fusing multimodal bio-
metric signals from the accelerometer and ECG sensors. High-dimensional support
vector machine (SVM) classifiers [Cristianini and Shawe-Taylor 2000] are employed,
and use novel features extracted from the ECG signal, in addition to more tradi-
tional features, resulting in more accurate state detection in a multihypothesis
testing framework. We use personalized models, which result in a higher detection
accuracy compared to using a common set of biometric parameters for all subjects.
Furthermore, our methods account for the inherent variability in a single individ-
ual’s movements as a function of context, denoting this variation as inter-session
variability, which further improves the detection accuracy.

4.1 Multihypothesis Testing for Activity-Detection

A feature is a characteristic measurement, transform or structural mapping of the
input data which captures important patterns of desired phenomena (PA in our
case) with reduced dimension. For example, the standard deviation of an accelerom-
eter reading or the mean of the instantaneous heart rate via the ECG. In the sequel,
we will explicitly outline three sophisticated methods for feature extraction from the
ECG sensor. Using sets of features with complementary characteristics normally
offers improvement in recognition accuracy [Ross et al. 2006].
For both the state-detection problem and the optimal sampling problem ad-

dressed in Section 5, we consider an M -ary hypothesis testing problem wherein
each distinct activity maps to a hypothesis. We consider the following nine PA
states: lying down, sitting, standing, sitting and fidgeting, standing and fidgeting,
playing Wii tennis, slow walking, brisk walking and running. Our methods are
easily extensible to more states. The feature set (see Section 4.2) is collected into
a vector y and our PA detector outputs an integer which corresponds to one of the
nine states, i.e. g(y) = i, where i ∈ {1, 2, · · ·9}. The goal of any M -ary detector is
to take the feature space and divide it intoM distinct regions, whenever a multiple-
dimension feature vector falls into one of the regions, the activity state associated
with that region is declared. Figure 5 provides an example of two-feature decision
regions for a seven state scenario. This figure was generated using the data of a
single individual and a simplified detector, outlined in Section 5.1; however it fa-
cilitates highlighting the fact that there are complex interactions between features
which yield non-linear decision regions. We further note that increasing the num-
ber of good features improves detection accuracy, as is evidenced in the case of the
ECG sensor results in Table II (see Section 6.2). And finally, the SVM classifiers
that we employ, determine near-optimal decision regions for very large dimensional
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Fig. 6. The mean and standard deviation of normalized ECG signals.

feature sets (we use 128 features).

4.2 Feature Extraction

We consider four types of features. The first set of features, which we denote as
conventional, were selected based on their efficacy as demonstrated in the literature
regarding wireless body area sensor networks; for the accelerometer, the conven-
tional ACC features are shown in Box 1 (see Section 4.2.5), and for the ECG sensor,
the mean and variance of the instantaneous heart-rate constitute the conventional
features. The other three features sets are comprised of features that were chosen
because their inclusion improves detection accuracy. These features result from
more complex processing of the ECG signal: (i) the Hermite polynomial expansion
(HPE) coefficients and (ii) the principal component analysis (PCA) error vector,
which have been previously studied in [Linh et al. 2003] for a different context
and [Pawar et al. 2007], respectively, and (iii) the standard deviation of multiple
normalized beats which is novel to our work. These techniques model the underlying
signals and the resultant model parameters are the features. First, we describe the
required pre-processing of the collected biometric ECG signal, followed by feature
extraction, and finally outline the temporal accelerometer features.

4.2.1 Pre-processing of the ECG Signal. Each type of body movement induces
a particular type of motion artifact in the ECG signal. For the jth heartbeat
observation under the ith hypothesis, or activity, the continuous-time recorded ECG
signal, rij(t), is modeled as [Pawar et al. 2007]

rij(t) = θi(t) + χij(t) + ηij(t), (1)

where θi(t) is the cardiac activity mean (CAM) which is the normal heart signal,
χij(t) is an additive motion artifact noise (MAN) due to ith class of activities,
and ηij(t) is the sensor noise present in the ECG signal. Since the length of each
heartbeat is different due to inherent heart rate variability, the first step of pre-
processing normalizes each heartbeat waveform to the same time duration (in the
phase domain) and amplitude range [Pawar et al. 2007; Clifford et al. 2006].
The D-dimensional vector representation of rij(t) over one heartbeat is denoted

rij and the D-dimensional vector representations of the corresponding CAM, MAN,
and sensor noise components are θi, χij , and ηij , respectively. Figure 6 shows the
mean and standard deviation of the normalized ECG signal for different activities.
One of our innovations over [Pawar et al. 2007] is the recognition that both CAM
and MAN carry discriminative information between different PAs.
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4.2.2 Principal Component Analysis. Principal component analysis (PCA) is
used for MAN component χij feature extraction. For the ith activity class, we use
νi heartbeats to estimate the CAM θi (as in [Pawar et al. 2007]),

θ̃i =
1

νi

νi
∑

j=1

rij . (2)

We note that the number of heartbeats available for training, νi, is different for each
of the activities. Subtracting the CAM from the signal rij yields residual activity
vectors ŕij :

ŕij = rij − θ̃i = χij + ήij , (3)

where ήij includes both the sensor noise and the CAM estimation noise induced
by the session variability. As noted in [Pawar et al. 2007], although the signal
component due to MAN has smaller amplitude than CAM, it has much greater
amplitude than the sensor noise, i.e. |η| ≪ |χi| < |θi|, ∀i (where |·| is the 2-norm).
Thus, the MAN has a dominant influence on the shape of the residual activity vector
ŕi. For each activity class i, we now compute eigenvectors and eigenvalues using the
eigen-decomposition of the covariance matrix Σi of ŕij . Let Ei = [ei0, ei1, · · · , eiκi

]
be a set of eigenvectors corresponding to the κi < D largest eigenvalues, and let
puj be a vector representation of the jth normalized testing ECG heartbeat after

pre-processing. We subtract the class mean θ̃i, see (2), from puj to yield p̃ij . Thus,
a measure of the reconstruction error in ith activity’s residual vector eigenspace,
for the jth ECG heartbeat observation, is defined as:

REPCA
j (i) =

∣

∣p̃ij − (EiE
T
i )p̃ij

∣

∣

2
, (4)

which is summed over νF heartbeat observations. The PCA residual error vector
REPCA = [REPCA(1) REPCA(2) . . . REPCA(M)] is a feature for activity-detection,
and accounts for inter-session variability.

4.2.3 Hermite polynomial expansion (HPE) Coefficients. A Hermite polynomial
expansion (HPE) is used to model the CAM component θi of the sampled ECG sig-
nal, and the resulting coefficients are another feature set for classification. Hermite
polynomials are classical orthogonal polynomial sequence representations [Arfken
et al. 1985] and have been successfully used to describe ECG signals for arrhythmia
detection [Linh et al. 2003], but do not appear to have been previously used for PA
detection. As shown in Figure 6, the shape of the CAM component for each activity
is different and thus these signals can be used to distinguish between different PA
states. Denote the pre-processed D-dimensional ECG curve vector and polynomial
order by x[n] and L, respectively. The HPE of the heartbeat can be expressed as
[Linh et al. 2003]

x[n] =
L−1
∑

l=0

clψl(n, δ), n ∈
[

− (D − 1)

2
,
(D − 1)

2

]

, (5)
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Fig. 7. Hermite basis functions with δ = 10 and D = 201: (a) n=0, (b) n=1, (c) n=3, (d) n=14.

where l is an integer, {cl}, l = 0, 1, · · · , L−1, are the HPE coefficients, and ψl(n, δ)
are the Hermite basis functions defined as:

ψl(n, δ) =
1

√

δ2ll!
√
π
e−n2/2δ2Hl(n/δ). (6)

The functions Hl(n/δ) are the Hermite polynomials [Arfken et al. 1985] which are
defined recursively by:

H0(t) = 1, H1(t) = 2t, (7)

Hl(t) = 2tHl−1(t)− 2(l − 1)Hl−2(t). (8)

Figure 7 presents several Hermite basis functions for different orders; the higher
the order, the greater the frequency of the signal. The HPE basis functions can
be denoted by a D × L matrix B = [ψ0 ψ1 · · · ψL−1]; the expansion coefficients
c = [c0 c1 · · · cL−1] are obtained by minimizing the sum squared error E:

E =
∥

∥x[n]−
L−1
∑

l=0

clψl(n, δ)
∥

∥

2

2
=

∥

∥x−Bc
∥

∥

2

2
→ c = (BTB)−1BTx. (9)

Now let νF denote the fixed number of normalized heartbeats in each running
window. The CAM component of this window is estimated using (2), but with
νF = 10 heartbeats instead of νi heartbeats. Figure 8 shows an example of HPE
based reconstruction which is nearly identical to the original waveform.

4.2.4 Standard deviation of multiple normalized beats. We had previously ob-
served that the variance of the ACC measurements offered discrimination capabil-
ity [Annavaram et al. 2008]; this feature for the ECG signal also has utility. From
Figure 6 it is clear that higher intensity states (walking) have a larger standard de-
viation than lower (lying). If the user is lying down or sitting, then the normalized
heartbeat shapes are more consistent or similar within the whole processing win-
dow, but if the user is walking or running, then the normalized ECG shape can vary
dramatically and become noisy. Thus, the sum of standard deviations for all the
normalized bins (D bins) in the window is also employed as a classification feature.
To our knowledge, this feature has not been previously used for PA classification.

4.2.5 Temporal Accelerometer Features. For the tri-axial ACC, a set of conven-
tional temporal features (see Box 1) are extracted from the recorded signals of each
axis, in a specified window (see Section 6.2). These features have been previously
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Box 1: Conventional temporal
accelerometer features.
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Fig. 9. The proposed physical activity recognition system overview

studied in [Maurer et al. 2006; Bao and Intille 2004; Huynh 2008; Godfrey et al.
2008], which employ various subsets of the features listed, as well as frequency-
domain features that are not considered in this work.
In the sequel, we explain the SVM classifier used. The feature vector that we

employ, y, consists of two components: yE and yA, which denote the features from
the ECG signal and accelerometer signal, respectively. In total 128 features are em-
ployed; 72 features from the ECG and 56 features from the tri-axial accelerometer.

4.3 Activity-Detection via SVM Classifiers

A support vector machine (SVM) using the generalized linear discriminative se-
quence (GLDS) kernel [Campbell et al. 2006] is used for classification. The ac-
celerometer features yA are computed for each of the N1 processing windows of
the signal, sni or sni (t), for the nth window and ith activity-class. Similarly, the
ECG features yE are computed using νF heartbeats for each of the N2 windows,

{rij}(n+1)νF
j=νFn+1. The ACC and ECG SVM classifier outputs are fused at the score

level; Figure 9 overviews the activity-modeling and classification procedure. The
SVM is a binary classifier constructed from sums of a kernel function K(·, ·), and
specified as

f(y) =

NSVM
∑

l=1

αltlK(y,yl) + d, (10)

where yl, l = 1, . . . , NSVM denotes the lth support vector, y is the feature vector
from the testing set, tl is the ideal output, and d is a bias term that is determined
via the training data. The GLDS kernel, using first-order polynomials, allows
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computation of the score function via a simple inner product, which is very compu-
tationally efficient (see [Campbell et al. 2006] for details); the LIBSVM tool [Chang
and Lin 2001] is used for the SVM model training. Fusion at the score level uses
a weighted sum, wherein the weights are determined by a logistic regression based
on the training data [Ross et al. 2006]. This method is particularly useful when
the individual sub-systems, i.e. the ACC and ECG feature sets, have significantly
different performances on the desired task [Ross et al. 2006]. This discrepancy in
performance between the two sensors is leveraged in the development of the optimal
sampling protocol, which is derived in the next section, to yield an energy-efficient
KNOWME health-monitoring application.

5. ENERGY-EFFICIENCY VIA OPTIMAL SAMPLING

The problem considered is allocating fixed number of samples N between K sensors
to minimize probability of misclassification. The energy-efficiency method for the
KNOWME Network differs from the energy-aware systems described in Section 2
in two key ways: (1) energy-efficiency is achieved via performance optimization and
(2) energy minimization is focused on the mobile device, and not the sensors or the
network as a whole. The mobile device is the bottleneck for long-term deployment.
The mobile device can turn off its Bluetooth for sensors whose measurements are
not currently being utilized, resulting in energy-efficient application development.
We first present a simplified signal model for the features y received at the mobile
device, and then outline our optimization problem which is motivated by the battery
life and data integrity issues discussed in Section 3.2.
The optimal sampling protocol dictates how many measurements to collect from

each of the sensors. Deriving an optimal sampling protocol based on the SVM
classifier in Section 4.3 is intractable for two reasons. First, there is no closed form
expression for the performance of the SVM to optimize. Second, the SVM uses
far too many features and thus optimal feature selection would be a combinatorial
problem which would incur prohibitive complexity. Thus, we use a single exemplary
feature per sensor and Gaussian models to simplify the computations. While using
only a subset of the features is not ideal, we observe that the application of our
optimized sampling protocol using a subset of the features does provide substantial
energy savings when applied to our novel PA detection methods outlined in Section
4. Furthermore we underscore that the full set of sensors are employed for both
detection and optimized sampling.
Obtaining the optimal allocation of measurements requires an exhaustive search

over all possibleK-partitions of the N total measurements, since all possible integer
allocations of measurements amongst the heterogeneous sensors must be considered
to find the optimal allocation. As the number of total available measurements and
number of sensors increases, a exhaustive search becomes computationally expen-
sive, requiring O(NK−1) function evaluations with a typical N beings several tens
of samples. To this end, we develop an analogous optimization problem which
yields an approximately optimal solution, but which can be solved using lower
complexity continuous-valued vector optimization techniques which requires O(K)
function evaluations. This optimal allocation is then applied to the SVM classifier
and shown to yield significant energy savings with no performance loss in Section
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Fig. 10. Histogram and normality plot for the Sitting hypothesis using the ACC variance feature.
This motivates the Gaussian models adopted for the development of the optimal sampling protocol.

6. Furthermore, the low complexity optimization is more easily implemented on
the mobile device.

5.1 Re-visiting the Signal Model

In Section 4.3, the feature vectors {yA,yE} are directly used by the non-parametric
high-dimensional SVM for classification. In contrast, for developing an energy-
efficient algorithm, we consider a simpler parametric model for a subset of features.
We make the following key assumptions: (i) based on our prior work [Annavaram
et al. 2008], we approximate the statistics of the key features as Gaussian, and (ii)
to capture the temporal correlation of the features, we further impose an auto-
regressive (AR), order 1 model. The data histogram and the fit of the Gaussian
model via a normality plot is shown in Figure 10, for the Sitting hypothesis us-
ing the ACC sensor. We notice that the normality plot validates the choice of
Gaussian models for the features y. Also, the AR model has been previously em-
ployed to estimate electroencephalogram (EEG) signals [Mohammadi et al. 2006]
and physiological hand-tremors [Zhang and Chu 2005]. In addition to the temporal
correlation, we allow for sensing and communication noise.
For our selected features, the correlation between features (ACC and ECG) was

found to be weak [Annavaram et al. 2008], thus different sensor signals are modeled
as uncorrelated2; this assumption is consistent with our observation that certain
sensors better discriminate between some subsets of activities than others and is
borne out by the numerical results. Furthermore, this assumption allows us to
develop the low-complexity implementation (see Section 5.3), which is critical to
on-phone implementation. Additionally, our preliminary simulations indicated that
assuming independence between features does not impact performance. We now
propose the following signal model for the decoded and processed samples, or fea-
tures, received by the fusion center:

yl − µjk = φ(yl−1 − µjk) + nl , l = 1, . . . , Nk, (11)

where φ is the AR(1) parameter, µjk is the mean of the feature for that the par-
ticular activity, and nl is the zero-mean noise with variance σ2

jk. Since the features

2Due to our jointly Gaussian feature model, lack of correlation implies statistical independence.
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are modeled as Gaussian, and given that the AR(1) model is linear, the M -ary
hypothesis test introduced in Section 4.1 is equivalent to the generalized Gaussian
problem, using the model in (11).
We denote mi and Σi, i = 1, 2, . . . ,M to be the mean vectors and covariance

matrices of the observations under the each of the M hypotheses, respectively. For
completeness, we recall the density of the multivariate Gaussian random variable,
x = [x1, · · · , xN ] is given by:

fX(x) =
1

(2π)N/2|Σ|1/2 exp

(

−1

2
(x− µ)TΣ−1(x− µ)

)

.
= N (x;m,Σ), (12)

where µ is the mean vector and Σ is the covariance matrix. For each of the K
sets of features A1, A2, . . . , AK from the sensors, the mean vector and covariance
matrix for the observations for hypothesis Hi for i = 1, · · · ,M are of the form

mi =











µiA1

µiA2

...
µiAK











and Σi =











Σi(A1) 0 · · · 0
0 Σi(A2) · · · 0
...

...
. . .

...
0 0 · · · Σi(AK)











, (13)

respectively, where µiAk
and Σi(Ak) are the single-feature statistics.

Given the signal model in (11), and incorporating zero-mean channel and mea-
surement noise with variance σ2

z , the covariance matrix for a particular feature Ak

can be expressed as

Σ(Ak) =
σ2
Ak

1− ϕ2
T+ σ2

zI, (14)

where T is a Toeplitz matrix whose first row/column is [1 φ φ2 . . . φNk−1],
and I is the Nk × Nk identity matrix. This results in the covariance matrices
Σj , j = 1, . . . ,M being block-Toeplitz matrices. To derive a vector optimization
that circumvents an exhaustive search, we may approximate the Toeplitz covariance
matrices with their associated circulant covariance matrices3 given by

Σ(Ak) =
σ2
Ak

1− ϕ2
C+ σ2

zI, (15)

where the matrix C is a circulant matrix whose first row is identical to that of T.

5.2 Misclassification Metric Derivation

We derive a closed-form approximation for the probability of error in the multi-
hypothesis case via a union bound incorporating the Bhattacharyya coefficients
between pairs of hypotheses. A result by Lianiotis [Lianiotis 1969] provides an
upper bound on the probability of error, given as

P (ǫ|S) ≤
∑

i<j

(

Pi|SPj|S

)1/2
e−ρij|S = Pub(ǫ), (16)

3We note that the inverse of the Toeplitz covariance matrix in (14) converges to the inverse of
the circulant covariance matrix in (15) in the weak sense. Sun et al [Sun et al. 2003] have derived
that a sufficient condition for weak convergence is that the strong norm of the inverse matrices be
uniformly bounded, which is the case for the matrix forms in (14) and (15) for 0 < φ < 1.
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Fig. 11. Finite-state machine with nominal prior probabilities used for optimal sampling algorithm.

where S is the current state, Pi|S and Pj|S are the a priori probabilities for hy-
potheses Hi and Hj from the current state, and ρij|S is the state-dependent Bhat-
tacharyya coefficient. Thus, the optimization problem considered can be stated
as

min
N

Pub(ǫ) subject to

K
∑

k=1

Nk = N, Nk ≥ 0 ∀k, (17)

whereN = (N1, N2, . . . , NK) is the allocation of samples amongst the K sensors. In
the case of the multivariate Gaussian, if fi(x) = N (x;mi,Σi), the Bhattacharyya
coefficient is given by:

ρij|S =
1

8
(mi −mj)

TΣ−1
h

(mi −mj) +
1

2
log

detΣh
√

detΣi · detΣj

, (18)

where |Σ| = detΣ, and 2Σh = Σi+Σj. We first note that ρij|S is a function of the
means and covariances associated with the hypotheses Hi and Hj , and is a measure
of the confusability of the two hypotheses. The upper bound Pub(ǫ), defined in (16),
incorporates classification errors that can be made between all possible pairs of
hypotheses. Note that not all pairs are considered in the case of evolving activities
undertaken by a subject. Figure 11 shows an exemplary finite state machine (FSM)
that specifies the probabilities of transitioning from one activity-state to another
for a subset of activities, and is used to define the evolution of physical activities
for the user. For example, as seen in Figure 11, if the subject is “Standing,” then
all three possible pairs of hypotheses are considered. In comparison, if the subject
is “Sitting,” the Sit→Run transition probability is 0, and so only two pairs of
hypotheses are considered. Therefore, the optimal allocation depends on both the
current state and the possible next state transition probabilities.

5.3 Low-Complexity Implementation

Given the block-diagonal structure of the covariance matrix in (13), we first de-
compose quadratic and determinant terms for each feature, and refer the reader to
[Thatte et al. 2009] for details. This decomposition implies that the computation
of each of the terms for an individual feature Ak is sufficient to evaluate the upper
bound on the probability of error specified in (16). The structure of the covariance
matrix in (13) is block-Toeplitz, or approximated as block-circulant, where the k-th
block is of size Nk ×Nk. For every unique allocation of samples amongst sensors,
the structure of the covariance matrix is distinct, and thus a combinatorial search
over all possible partitions of the total number of samples is required to find the
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optimal allocation of samples to minimize the probability of error.
To evaluate the determinant term in (18), we use the Toeplitz structure in (14),

and rewrite the covariance matrix as follows [Ipsen and Lee 2006]:

Σ(Ak) = ΣD(Ak) +Σoff(Ak). (19)

The determinant is subsequently computed using the identity:

detΣ = detΣD · det
(

I+Σ−1
D Σoff

)

, (20)

the approximation of log(I + A) for a nilpotent matrix A, and geometric sum
identities. To simplify quadratic term in (18), we use the circulant approximation
(15) of the inverse of the covariance matrix, and a simple result from [Wilansky
1951] which states that if the sum of elements in each row of a square matrix is
c, then the sum of elements in each row of the inverse is 1/c. Completing these
computations, for a single block of the covariance matrix Σ(Ak), simplifies the
quadratic term as

(mjAk
−miAk

)2Nk

[

1

2

σ2
iAk

+ σ2
jAk

1− φ2
1− φNk

1− φ
+ σ2

z

]−1

. (21)

We refer the reader to [Thatte et al. 2009] for the details, and conclude that the
combinatorial search over K integer partitions of N samples is converted to a
continuous-valued vector optimization, which is minimized with significantly lower
complexity.

6. PERFORMANCE ANALYSIS

In this section, we first overview the data collection effort, protocols and test subject
details. We then present numerical results for the physical activity recognition and
optimal sampling algorithms.

6.1 Data Collection

Traditional health-monitoring experiments (see e.g. [Spruijt-Metz et al. 2008]) in
preventive health scenarios require test subjects to first wear an accelerometer (or
some other sensor) for an extended period of time. At the end of the pre-determined
phase, the data is collected and processed before the experiment is repeated, if
required. There is no explicit training period, and standard cut-points (decision
regions for single features), which may not be applicable to all demographics, are
employed to determine the level of user physical activity. KNOWME adopts a
different methodology since we use personalized training periods, and offer real-
time feedback and user visualization.
The main motivation for using a personalized training phase is activity detection

performance: there are variations amongst the biometric signals of different indi-
viduals. Thus, using models developed on one set of individuals and then applied to
another set of individuals would result in a decrease in detection performance and
potentially reduced energy efficiency. Most typical medical interventions begin with
intake interviews and baseline data collection. Thus, a brief, personalized training
is easily realizable during this initial intervention phase.
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Fig. 12. Placement of the electrodes (black circles) and accelerometer (red square) and data
collection environment.

Table II. Performance of SVM system based on temporal ECG features (% correct)

ECG 1 PCA 2 HPE 3 HR+NM 2+3 1+2+3

10 beats 46.9 51.7 43.3 56.7 60.8

20 seconds 49.4 54.4 44.0 60.0 64.2

Data collection was conducted using two Alive heart rate monitors [AliveTech-
nologies 2008] and the Nokia N95 mobile device. A single lead ECG signal is
collected with electrodes on the chest; one heart rate monitor with a built-in ac-
celerometer is placed on the left hip to record the ECG and accelerometer signal,
and the second heart rate monitor with built-in accelerometer is placed on the right
hip to record only the accelerometer signal. The placement of electrodes and the
accelerometer sensor is shown in Figure 12. For each of three sessions, test subjects
were required to wear the sensors and perform 9 specific categories of PA, following
a predetermined protocol [Spruijt-Metz et al. 2009]. The sequence of the 9 PAs
to be performed was the same for each session for every test subject, unless the
test subjects were physically unable to perform the required sequence. Data from
5 subjects (2 male, 3 female; ages range from 13-30; body mass index range from
23.0-34.3) is reported, wherein each subject performed 4 sessions on different days
and times. The data reflects the variability of electrodes position and a variety
of environmental and physiological factors, and we recall that the state-detection
algorithms developed in Section 4 account for this inter-session variability.

6.2 Performance of Activity-Detection Classification

For each subject, training was on 3 sessions’ data and testing was on the remaining
session. Training and testing data are from different days/times, and training
data and testing data are rotated 4 times (for cross validation). The performance
reported is based on the average of all the subjects and all the rotation tests.
Decisions from the SVM classifier are made every 20 seconds; the number of HPE
coefficients, the PCA eigenvector dimension and the normalized heartbeat sample
length D are empirically chosen to be 60, 40 and 201, respectively.
Table II shows the results of the ECG temporal features based SVM system.

Compared to the conventional PCA method [Pawar et al. 2007], the proposed HPE
coefficients together with heart rate (HR) mean/variance and noise measurement
(NM) features achieved nearly 10% improvement in accuracy. Furthermore, the
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Table III. Performance of SVM system based on temporal Accelerometer features
Window length (seconds) 1.68 3.36 6.72 13.44

Accuracy (% correct) 83.56 84.05 84.85 84.36

PCA approach requires projection and distance calculations for each heartbeat
which is computationally expensive. Also, the pre-trained activity mean might
be different from the testing condition due to the session variability which can
decrease the system performance. The proposed method, based on the linear kernel
of SVM and the support vector compression method, is more efficient in terms of
both computational cost and model size. Finally, fusing PCA, HPE, HR and NM
features together achieves a further 4% PA recognition accuracy improvement. This
is because PCA and HPE model the MAN and CAM part of the normalized ECG
waveform, respectively, while HR and NM measure the heart rate and inter-beats
noise level, and this information is complementary. From Table II, we can also
see that the single lead ECG signal has more activity discrimination information
than provided by just the heart rate, but the performance is still relatively low
compared with accelerometer based methods. Therefore, fusing the information
from both modalities is necessary. We find that fusing the accelerometer and ECG
modalities yields a detection accuracy of 85.5%, which is a slight improvement
(< 1%) from using using only the temporal accelerometer features.
Table III shows the performance of the proposed SVM system based on the GLDS

kernel and the temporal accelerometer features listed in Box 1. The accuracy is not
sensitive to the processing window size and a 6.72-second window size (correspond-
ing to 504 samples) gives the best performance, which matches the experiment
results in [Bao and Intille 2004; Krause et al. 2005; Ravi et al. 2005].

6.3 Performance of Optimal Sampling

As described in Section 5.1, simple Gaussian model based detectors are adopted to
develop a low-complexity implementation of the optimal sampling protocol. This
algorithm is based entirely on a parametric model (Gaussian), in contrast to data-
driven/non-parametric approach used for state-detection using SVM classifiers in
Section 4.3. For clarity of exposition, we focus on using two features and discrim-
inating between four hypotheses (Sitting, Standing, Walking and Running). We
assume that the mobile device allocates N1 ACC variance and N2 ECG period
samples, respectively. We recall that the ACC variance feature is the average (over
the three axes) variance of the accelerometer signal in a fixed 6.72-second window,
and the ECG period feature is the average heart-rate over 10 heartbeats. Each
of these features is time-varying due to a number of factors, including the current
user state, and the AR(1) model, described in Section 5.1, attempts to capture this
temporal correlation. We further assume that the finite-state machine, shown in
Figure 11, determines transitions between activities. These are the state-dependent
a priori probabilities specified in the probability of error upper bound in (16), and
are exemplary values, and not based on real data. This is an avenue for future
research.
The underlying Gaussian distributions associated with each of the hypotheses for

these two features for a particular test subject are shown in Figure 13. Notice that,
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Fig. 14. Optimal allocation of samples
between ACC and ECG sensors; allocate
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in Figure 13, that ACC variance is not a good discriminator between the Sit and
Stand activities, but the ECG period is. The upper bound on the probability of
error is plotted as a function of all possible allocations between these two features
in Figure 14. Assuming we are initially in the “Run” hypothesis, we find that
the optimal allocation corresponds to allocating all available samples to the ACC,
which achieves the minimum probability of misclassification. For this scenario, we
find that the low-complexity implementation yields a solution which corresponds
to optimal solution obtained via the exhaustive search.
Since we have used the high-dimensional SVM for accurate physical activity

recognition, and simpler Gaussian model based detectors to derive the optimal al-
location, we now compare the energy-savings achieved due to each of these methods.
Different methods are used to compute the resulting energy-savings for the high-
dimensional SVM classifier and a Gaussian detector that uses two features. For the
Gaussian detector, we denote the bounds on the error probability corresponding to
the equal and optimal allocations ofN samples as Peq(N) and Popt(N), respectively.
In order to compute the energy-savings, we now increase the number of available
samples to N ′, and find the minimum N ′ > N such that Peq(N

′) = Popt(N). For
our collected data, N = 40 and N ′ = 63, this translates to an energy savings of
approximately 38%. Note that these numbers are averaged across all subjects.
The energy-savings when eight activities are considered (the 9 PAs enumerated in

Section 4.1 with the exception of playing Wii tennis) reduces to approximately 20%
(from 38% when only four activities are considered), averaged across all subjects.
The algorithm optimally allocates, on average 85% of the samples to the ACC and
the remaining 15% to the ECG. Furthermore, we find that the optimal allocation
is not significantly affected by the initial state of the subject, given the exemplary
a priori probabilities.
In order to compute the energy-savings for the SVM classifier, we first compute
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the optimal allocation of samples for a particular state using the simpler Gaus-
sian models. Then the testing data that corresponds to this optimal allocation
is replayed through the SVM classifier, and we find that 50% energy-savings are
achieved. For the subset of activities considered, the detection accuracy is main-
tained while using only the appropriate one of the two sensors, i.e. when the “Sit”
state is assumed, only the ECG features are employed, whereas if the current state
is “Walk,” the ACC features in Box 1 are used.
Although the optimal sample allocation is determined for the simpler, Gaussian

case, we see that the resultant allocation yields significant energy savings for the
SVM classifier without a loss in performance.

7. CONCLUSIONS AND FUTURE WORK

We have developed a prototype implementation of the KNOWME Network, which
is an energy-efficient health-monitoring system for physical activity detection. Our
goal is to extend this system to enable true energy-expenditure estimation, with
a focus on pediatric obesity intervention. The current implementation of our sys-
tem uses the Nokia N95 mobile device along with off-the-shelf sensors that com-
municate via the Bluetooth protocol. Accurate state detection is achieved using
high-dimensional SVM classifiers with a GLDS kernel and a novel feature set based
on accurate modeling of the ECG signal via Hermite polynomials and a principal
component analysis. Bluetooth communication consumes a relatively large amount
of power, so an optimal sampling protocol is developed to create a more energy-
aware sensing system and to counter the relatively high packet-loss that results
when several Bluetooth sensors are connected to the mobile device at one time.
Our hardware choices enable “plug-and-play” capabilities for multimodal sensors,

and the software allows for efficient memory management and uninterrupted phone
operation. In addition, the specific implementation chosen makes it easy to port
the system onto a different mobile platform in the future. The accurate physical
activity recognition algorithm accounts for inter-session variability, and employs
novel features extracted from the ECG biometric signal and high-dimensional SVM
classifiers. Energy efficiency at the mobile device fusion center is achieved via
performance optimization, in that the optimal sampling algorithm minimizes the
probability of misclassification. We find that significant energy-savings are achieved
by the SVM classifier, even when the optimal allocation is computed using simpler
Gaussian models and a minimal subset of the features.
We are currently working on enhancing the KNOWME Network on three fronts:

first, we are developing algorithms to exploit both frequency-domain and temporal
features for physical activity recognition, which should result in a more accurate
classifier. We are also developing alternative models that will allow the seamless
integration of the optimal sampling protocol and high-dimensional classifiers. Sec-
ond, we are implementing our algorithms on the mobile device, and investigating
the minimization of power consumption due to computation as well as Bluetooth
communication. We are also implementing real-time user feedback and introducing
location- and context-awareness via GPS and other custom-built sensors. Finally,
we are working towards long-term continuous deployment of the KNOWME Net-
work and an expanded data collection effort with targeted youth test subjects in
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order to validate the practicality of the system as a modality for intervention in
pediatric obesity.
We have recently deployed KNOWME Networks in the field in 12 overweight His-

panic youth aged 14.8 ± 1.9 years (12-18) with an initialized personalized phase and
100% compliance, validating the feasibility of personalized training for a small group
of test subjects. The integrated optimal sampling protocols and high-dimensional
classifers are currently being implemented on the mobile device for an upcoming
field trial. This field trail will use KNOWME’s ability to detect cumulative time
spend in sedentary behavior in real-time to trigger tailored text messages that we
have developed in focus group and individual interviews with overweight Hispanic
youth that encourage physical activity. KNOWME will sense and transmit all re-
sponses to messaging, evaluate best timing for messaging and the types of messages
that elicit the longest and most intense bouts of physical activity.

REFERENCES

AliveTechnologies. 2008. Wireless health monitors from alive technology, www.alivetec.com.

Annavaram, M., Medvidovic, N., Mitra, U., Narayanan, S., Sukhatme, G., Meng, Z., Qiu,

S., Kumar, R., Thatte, G., and Spruijt-Metz, D. 2008. Multimodal sensing for pediatric
obesity applications. In Proceedings of UrbanSense08. Raleigh, NC, 21–25.

Arfken, G., Weber, H., and Weber, H. 1985. Mathematical methods for physicists. Academic
Press, New York.

Bao, L. and Intille, S. 2004. Activity recognition from user-annotated acceleration data. Lecture
Notes in Computer Science 3001, 1–17.

Benbasat, A. and Paradiso, J. 2007. A framework for the automated generation of power-
efficient classifiers for embedded sensor nodes. In Proceedings of SenSys. Sydney, Australia,
219–232.

Bonomi, A., Goris, A., Yin, B., and Westerterp, K. 2009. Detection of type, duration, and
intensity of physical activity using an accelerometer. Medicine and Science in Sports and
Exercise 41(9), 1770–1777.

Caballero, B. 2007. The global epidemic of obesity: an overview. Epidemiologic Reviews 29(1),
1–5.

Campbell, W., Campbell, J., Reynolds, D., Singer, E., and Torres-Carrasquillo, P. 2006.
Support vector machines for speaker and language recognition. Computer Speech & Lan-
guage 20, 2-3, 210–229.

Chang, C.-C. and Lin, C.-J. 2001. LIBSVM: a library for support vector machines. Software
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Chen, K. and Bassett, D. 2005. The technology of accelerometry-based activity monitors:
current and future. Medicine and Science in Sports and Exercise 37(11 Suppl), S490–500.

Chen, K. and Sun, M. 1997. Improving energy expenditure estimation by using a triaxial ac-
celerometer. Journal of Applied Physiology 83(6), 2112–2122.

Clifford, G., Azuaje, F., and McSharry, P. 2006. Advanced methods and tools for ECG data
analysis. Artech House.

Collins, L., Murphy, S., and Bierman, K. 2004. A conceptual framework for adaptive preventive
interventions. Prevention Science 5(3), 185–196.

Collins, R., Kashdan, T., and Gollnisch, G. 2003. The feasibility of using cellular phones to
collect ecological momentary assessment data: application to alcohol consumption. Experimen-
tal and Clinical Psychopharmacology 11, 73–78.

Cristianini, N. and Shawe-Taylor, J. 2000. An Introduction to Support Vector Machines and
Other Kernel-based Learning Methods. Cambridge University Press, Cambridge, UK.

Crouter, S., Clowers, K., and Jr., D. B. 2006. A novel method for using accelerometer data
to predict energy expenditure. Journal of Applied Physiology 100(4), 1324–1331.

ACM Journal Name, Vol. V, No. N, Month 20YY.



WHS’09 Special Issue · 25

Ermes, M., Parkka, J., Mantyjarvi, J., and Korhonen, I. 2008. Detection of daily activities

and sports with wearable sensors in controlled and uncontrolled conditions. IEEE Transactions
on Information Technology in Biomedicine 12, 1, 20–26.

Freedman, M., Lester, K., Milby, C. M. J., and Schumacher, J. 2006. Cell phones for
ecological momentary assessment with cocaine-addicted homeless patients in treatment. Journal
of Substance Abuse Treatment 30, 105–111.

Godfrey, A., Conway, R., Meagher, D., and ÓLaighin, G. 2008. Direct measurement of
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